|
Системний аналіз розмірів фрагмента зображень аерофотозйомки сільськогосподарських угідь для пошуку аномалій у них методами машинного навчання [Текст] / В. Б. Мокін, Д. М. Грузман, С. О. Довгополюк, А. О. Лотоцький // Вісник Вінницького політехнічного інституту. – 2019. – № 3. – С. 75-85.
Мета дослідження - розробити комплексний системний підхід до аналізу та обчислення оптимального за багатьма критеріями розміру найменшого фрагмента зображень аерофотозйомки СГУ для пошуку аномалій у них методами машинного глибинного навчання. Проведено огляд відомих підходів до розв'язання задачі пошуку таких аномалій та запропоновано які саме інформаційні технології потрібно використовувати на етапах передоброблення, машинного глибинного навчання та які типові проблеми слід усувати під час цього, з урахуванням специфіки предметної області. Виділено основні критерії, які необхідно враховувати для розв'язання поставленої задачі: тривалість обчислення, точність (мінімальна похибка) навчання моделі, наближеність середньої площі кластерів до заданої, за умови виконання ряду обмежень. Запропоновано вираз інтегрального критерію для врахування цих критеріїв та підходи щодо вибору їх ваг. Розроблено алгоритм застосування запропонованих підходів та приймів щодо застосування відомих методів машинного глибинного навчання та кластеризації. |